
PLEASANT. Hypertension in pregnancy: the management of hypertensive disorders in pregnancy. NICE Clinical Guideline 107 (National Institute for Health and Clinical Excellence, 2011).
Google Scholar
PLEASANT. Hypertension in pregnancy: diagnosis and management. NICE directive [NG133] (National Institute for Health and Clinical Excellence, 2019).
Google Scholar
Say, L… et al. Global causes of maternal death: a systematic review from WHO. Lancet Glob. Health 2, e323–e333. https://doi.org/10.1016/S2214-109X(14)70227-X (2014).
Bellamy, L., Casas, JP, Hingorani, AD & Williams, DJ Pre-eclampsia and risk of cardiovascular disease and cancer later in life: a systematic review and meta-analysis. BMJ 335974. https://doi.org/10.1136/bmj.39335.385301.BE (2007).
Redman, CW, Sacks, GP & Sargent, IL Preeclampsia: An excessive maternal inflammatory response to pregnancy. A m. J. Obstet. Gynecol. 180499–506 (1999).
Ross, R. Atherosclerosis: An Inflammatory Disease. N.Engl. J.Med. 340, 115–126. https://doi.org/10.1056/NEJM199901143400207 (1999).
Weber, C. et al. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the “Atherosclerosis and Vascular Biology” and “Thrombosis” working groups of the European Society of Cardiology (ESC). Thromb. Hemost. https://doi.org/10.1160/TH16-02-0091 (2016).
Ghattas, A., Griffiths, HR, Devitt, A., Lip, GY & Shantsila, E. Monocytes in coronary heart disease and atherosclerosis: where do we stand?. Jam. Coll. Cardole. 62, 1541-1551. https://doi.org/10.1016/j.jacc.2013.07.043 (2013).
Shantsila, E. & Lip, GY Monocytes in acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 29, 1433–1438. https://doi.org/10.1161/ATVBAHA.108.180513 (2009).
Shansila, E. et al. Immunophenotypic characterization of human monocyte subsets: possible implications for the pathophysiology of cardiovascular diseases. J. Thromb. Hemost. 9, 1056-1066. https://doi.org/10.1111/j.1538-7836.2011.04244.x (2011).
Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in the blood. Blood 116, e74–e80. https://doi.org/10.1182/blood-2010-02-258558 (2010).
Apostolakis, S., Lip, GY & Shantsila, E. Monocytes in heart failure: Relation to impaired immune overreaction or desperate attempt at tissue repair?. Cardiovascular. Res. 85, 649–660. https://doi.org/10.1093/cvr/cvp327 (2010).
Yona, S. & Jung, S. Monocytes: subsets, origins, fates and functions. Running. Notice. Hematol. 17, 53–59. https://doi.org/10.1097/MOH.0b013e3283324f80 (2010).
Dutta, P. & Nahrendorf, M. Monocytes in myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 35, 1066-1070. https://doi.org/10.1161/ATVBAHA.114.304652 (2015).
Urra, X. et al. Monocyte subtypes predict the clinical course and prognosis of human stroke. J. Cereb. Blood flow Metab. 29, 994-1002. https://doi.org/10.1038/jcbfm.2009.25 (2009).
Rogacev, KS et al. CD14++CD16+ Monocytes and Cardiovascular Outcomes in Patients with Chronic Kidney Disease. EUR. J-heart 32, 84–92. https://doi.org/10.1093/eurheartj/ehq371 (2011).
Heine, GH et al. CD14(++)CD16+ monocytes but not total monocytes predict cardiovascular events in dialysis patients. Kidney Int. 73, 622–629. https://doi.org/10.1038/sj.ki.5002744 (2008).
Wrigley, BJ, E. Shantsila, Tapp, LD, and Lip, GY Increased monocyte-platelet aggregate formation in ischemic heart failure. Circ. Cardiac failure. 6, 127–135. https://doi.org/10.1161/CIRCHEARTFAILURE.112.968073 (2013).
Shantsila, E., Montoro-Garcia, S. & Lip, GY Monocytes circulate in constant reversible interaction with platelets in a [Ca2+]- dependent manner. Platelets 25, 197–201. https://doi.org/10.3109/09537104.2013.784248 (2014).
Passacquale, G. et al. The monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLOS ONE 6, e25595. https://doi.org/10.1371/journal.pone.0025595 (2011).
Gkaliagkousi, E. et al. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. EUR. J-heart 30, 3048–3054. https://doi.org/10.1093/eurheartj/ehp330 (2009).
Oh, ES, Na, M. & Rogers, CJ The association between monocyte subsets and cardiometabolic disorders/cardiovascular disease: a systematic review and meta-analysis. Front. Cardiovascular. Med. 8640124. https://doi.org/10.3389/fcvm.2021.640124 (2021).
Nathan, HL, Duhig, K., Hezelgrave, NL, Chappell, LC & Shennan, AH Blood pressure measurement during pregnancy. Obstet. Gynecol. 1791–98 (2015).
Shansila, E. et al. The effects of exercise and diurnal variations on monocyte subsets and monocyte-platelet aggregates. EUR. J. Clin. Invest. 42, 832–839. https://doi.org/10.1111/j.1365-2362.2012.02656.x (2012).
Melgert, BN et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLOS ONE seven, e45229. https://doi.org/10.1371/journal.pone.0045229 (2012).
Berg, KE et al. Elevated CD14++CD16- monocytes predict cardiovascular events. Circ. Cardiovascular. Broom. 5, 122–131. https://doi.org/10.1161/CIRCGENETICS.111.960385 (2012).
Ozaki, Y. et al. Circulating CD14+CD16+ Monocyte Subsets as Biomarkers of Coronary Artery Disease Severity in Patients with Stable Angina Pectoris. Circ. J 762412-2418 (2012).
Wong, KL et al. Gene expression profiling reveals the defining characteristics of classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16-31. https://doi.org/10.1182/blood-2010-12-326355 (2011).
Zawada, AM et al. SuperSAGE evidence for CD14++CD16+ monocytes as the third subset of monocytes. Blood 118, e50–e61. https://doi.org/10.1182/blood-2011-01-326827 (2011).
Wrigley, BJ, E. Shantsila, Tapp, LD & Lip, GY CD14++CD16+ monocytes in patients with acute ischemic heart failure. EUR. J. Clin. Invest. 43, 121–130. https://doi.org/10.1111/eci.12023 (2013).
Bosco, MC et al. Monocytes and dendritic cells in a hypoxic environment: focus on chemotaxis and migration. Immunobiology 213, 733–749. https://doi.org/10.1016/j.imbio.2008.07.031 (2008).
Krinninger, P. et al. Peripheral monocytes from obese women show increased expression of chemokine receptors and migration capacity. J. Clin. Endocrinol. Metab. 99, 2500–2509. https://doi.org/10.1210/jc.2013-2611 (2014).
Pamukcu, B., Lip, GY, Devitt, A., Griffiths, H. & Shantsila, E. The role of monocytes in atherosclerotic coronary artery disease. Anne. Med. 42, 394–403. https://doi.org/10.3109/07853890.2010.497767 (2010).
Al-ofi, E., Coffelt, SB, and Anumba, DO Monocyte subpopulations of preeclamptic patients are abnormally asymmetric and exhibit exaggerated responses to Toll-like receptor ligands. PLOS ONE seven, e42217. https://doi.org/10.1371/journal.pone.0042217 (2012).
Kim, JS et al. Distribution of CD14+ and CD68+ macrophages in the placental bed and basal plate of women with preeclampsia and preterm labor. Placenta 28, 571–576. https://doi.org/10.1016/j.placenta.2006.07.007 (2007).
Brown, Ohio et al. Greater reduction of platelet activation markers and platelet-monocyte aggregates by prasugrel compared to clopidogrel in stable coronary artery disease. Thromb. Hemost. 100626–633 (2008).
May, AE et al. Reduction of monocyte-platelet interaction and monocyte activation in patients receiving antiplatelet therapy after coronary stent implantation. EUR. J-heart 181913-1920 (1997).
Allen, N. et al. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis 282, 11–18. https://doi.org/10.1016/j.atherosclerosis.2018.12.029 (2019).
Meher, S., Duley, L., Hunter, K., and Askie, L. Antiplatelet therapy before or after 16 weeks’ gestation to prevent preeclampsia: a meta-analysis of individual participant data. A m. J. Obstet. Gynecol. 216, 121–128. https://doi.org/10.1016/j.ajog.2016.10.016 (2017).
Gremel, T. et al. The formation of platelet-monocyte aggregates is independent of platelet reactivity induced by residual agonists during treatment. Atherosclerosis 207, 608–613. https://doi.org/10.1016/j.atherosclerosis.2009.05.037 (2009).