Home Cellular health Monocytes are increased in pregnancy after gestational hypertensive disease

Monocytes are increased in pregnancy after gestational hypertensive disease

0
  • PLEASANT. Hypertension in pregnancy: the management of hypertensive disorders in pregnancy. NICE Clinical Guideline 107 (National Institute for Health and Clinical Excellence, 2011).

    Google Scholar

  • PLEASANT. Hypertension in pregnancy: diagnosis and management. NICE directive [NG133] (National Institute for Health and Clinical Excellence, 2019).

    Google Scholar

  • Say, L… et al. Global causes of maternal death: a systematic review from WHO. Lancet Glob. Health 2, e323–e333. https://doi.org/10.1016/S2214-109X(14)70227-X (2014).

    PubMed Google Scholar article

  • Bellamy, L., Casas, JP, Hingorani, AD & Williams, DJ Pre-eclampsia and risk of cardiovascular disease and cancer later in life: a systematic review and meta-analysis. BMJ 335974. https://doi.org/10.1136/bmj.39335.385301.BE (2007).

    PubMed Article PubMed Central Google Scholar

  • Redman, CW, Sacks, GP & Sargent, IL Preeclampsia: An excessive maternal inflammatory response to pregnancy. A m. J. Obstet. Gynecol. 180499–506 (1999).

    CAS Google Scholar Article

  • Ross, R. Atherosclerosis: An Inflammatory Disease. N.Engl. J.Med. 340, 115–126. https://doi.org/10.1056/NEJM199901143400207 (1999).

    CAS PubMed Google Scholar Article

  • Weber, C. et al. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the “Atherosclerosis and Vascular Biology” and “Thrombosis” working groups of the European Society of Cardiology (ESC). Thromb. Hemost. https://doi.org/10.1160/TH16-02-0091 (2016).

    PubMed Google Scholar article

  • Ghattas, A., Griffiths, HR, Devitt, A., Lip, GY & Shantsila, E. Monocytes in coronary heart disease and atherosclerosis: where do we stand?. Jam. Coll. Cardole. 62, 1541-1551. https://doi.org/10.1016/j.jacc.2013.07.043 (2013).

    CAS PubMed Google Scholar Article

  • Shantsila, E. & Lip, GY Monocytes in acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 29, 1433–1438. https://doi.org/10.1161/ATVBAHA.108.180513 (2009).

    CAS PubMed Google Scholar Article

  • Shansila, E. et al. Immunophenotypic characterization of human monocyte subsets: possible implications for the pathophysiology of cardiovascular diseases. J. Thromb. Hemost. 9, 1056-1066. https://doi.org/10.1111/j.1538-7836.2011.04244.x (2011).

    CAS PubMed Google Scholar Article

  • Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in the blood. Blood 116, e74–e80. https://doi.org/10.1182/blood-2010-02-258558 (2010).

    CAS PubMed Google Scholar Article

  • Apostolakis, S., Lip, GY & Shantsila, E. Monocytes in heart failure: Relation to impaired immune overreaction or desperate attempt at tissue repair?. Cardiovascular. Res. 85, 649–660. https://doi.org/10.1093/cvr/cvp327 (2010).

    CAS PubMed Google Scholar Article

  • Yona, S. & Jung, S. Monocytes: subsets, origins, fates and functions. Running. Notice. Hematol. 17, 53–59. https://doi.org/10.1097/MOH.0b013e3283324f80 (2010).

    PubMed Google Scholar article

  • Dutta, P. & Nahrendorf, M. Monocytes in myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 35, 1066-1070. https://doi.org/10.1161/ATVBAHA.114.304652 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • Urra, X. et al. Monocyte subtypes predict the clinical course and prognosis of human stroke. J. Cereb. Blood flow Metab. 29, 994-1002. https://doi.org/10.1038/jcbfm.2009.25 (2009).

    CAS PubMed Google Scholar Article

  • Rogacev, KS et al. CD14++CD16+ Monocytes and Cardiovascular Outcomes in Patients with Chronic Kidney Disease. EUR. J-heart 32, 84–92. https://doi.org/10.1093/eurheartj/ehq371 (2011).

    CAS PubMed Google Scholar Article

  • Heine, GH et al. CD14(++)CD16+ monocytes but not total monocytes predict cardiovascular events in dialysis patients. Kidney Int. 73, 622–629. https://doi.org/10.1038/sj.ki.5002744 (2008).

    CAS PubMed Google Scholar Article

  • Wrigley, BJ, E. Shantsila, Tapp, LD, and Lip, GY Increased monocyte-platelet aggregate formation in ischemic heart failure. Circ. Cardiac failure. 6, 127–135. https://doi.org/10.1161/CIRCHEARTFAILURE.112.968073 (2013).

    CAS PubMed Google Scholar Article

  • Shantsila, E., Montoro-Garcia, S. & Lip, GY Monocytes circulate in constant reversible interaction with platelets in a [Ca2+]- dependent manner. Platelets 25, 197–201. https://doi.org/10.3109/09537104.2013.784248 (2014).

    CAS PubMed Google Scholar Article

  • Passacquale, G. et al. The monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLOS ONE 6, e25595. https://doi.org/10.1371/journal.pone.0025595 (2011).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Gkaliagkousi, E. et al. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. EUR. J-heart 30, 3048–3054. https://doi.org/10.1093/eurheartj/ehp330 (2009).

    CAS PubMed Google Scholar Article

  • Oh, ES, Na, M. & Rogers, CJ The association between monocyte subsets and cardiometabolic disorders/cardiovascular disease: a systematic review and meta-analysis. Front. Cardiovascular. Med. 8640124. https://doi.org/10.3389/fcvm.2021.640124 (2021).

    CAS PubMed Article PubMed Central Google Scholar

  • Nathan, HL, Duhig, K., Hezelgrave, NL, Chappell, LC & Shennan, AH Blood pressure measurement during pregnancy. Obstet. Gynecol. 1791–98 (2015).

    Google Scholar article

  • Shansila, E. et al. The effects of exercise and diurnal variations on monocyte subsets and monocyte-platelet aggregates. EUR. J. Clin. Invest. 42, 832–839. https://doi.org/10.1111/j.1365-2362.2012.02656.x (2012).

    CAS PubMed Google Scholar Article

  • Melgert, BN et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLOS ONE seven, e45229. https://doi.org/10.1371/journal.pone.0045229 (2012).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Berg, KE et al. Elevated CD14++CD16- monocytes predict cardiovascular events. Circ. Cardiovascular. Broom. 5, 122–131. https://doi.org/10.1161/CIRCGENETICS.111.960385 (2012).

    CAS PubMed Google Scholar Article

  • Ozaki, Y. et al. Circulating CD14+CD16+ Monocyte Subsets as Biomarkers of Coronary Artery Disease Severity in Patients with Stable Angina Pectoris. Circ. J 762412-2418 (2012).

    CAS Google Scholar Article

  • Wong, KL et al. Gene expression profiling reveals the defining characteristics of classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16-31. https://doi.org/10.1182/blood-2010-12-326355 (2011).

    CAS PubMed Google Scholar Article

  • Zawada, AM et al. SuperSAGE evidence for CD14++CD16+ monocytes as the third subset of monocytes. Blood 118, e50–e61. https://doi.org/10.1182/blood-2011-01-326827 (2011).

    CAS PubMed Google Scholar Article

  • Wrigley, BJ, E. Shantsila, Tapp, LD & Lip, GY CD14++CD16+ monocytes in patients with acute ischemic heart failure. EUR. J. Clin. Invest. 43, 121–130. https://doi.org/10.1111/eci.12023 (2013).

    CAS PubMed Google Scholar Article

  • Bosco, MC et al. Monocytes and dendritic cells in a hypoxic environment: focus on chemotaxis and migration. Immunobiology 213, 733–749. https://doi.org/10.1016/j.imbio.2008.07.031 (2008).

    CAS PubMed Google Scholar Article

  • Krinninger, P. et al. Peripheral monocytes from obese women show increased expression of chemokine receptors and migration capacity. J. Clin. Endocrinol. Metab. 99, 2500–2509. https://doi.org/10.1210/jc.2013-2611 (2014).

    CAS PubMed Google Scholar Article

  • Pamukcu, B., Lip, GY, Devitt, A., Griffiths, H. & Shantsila, E. The role of monocytes in atherosclerotic coronary artery disease. Anne. Med. 42, 394–403. https://doi.org/10.3109/07853890.2010.497767 (2010).

    CAS PubMed Google Scholar Article

  • Al-ofi, E., Coffelt, SB, and Anumba, DO Monocyte subpopulations of preeclamptic patients are abnormally asymmetric and exhibit exaggerated responses to Toll-like receptor ligands. PLOS ONE seven, e42217. https://doi.org/10.1371/journal.pone.0042217 (2012).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Kim, JS et al. Distribution of CD14+ and CD68+ macrophages in the placental bed and basal plate of women with preeclampsia and preterm labor. Placenta 28, 571–576. https://doi.org/10.1016/j.placenta.2006.07.007 (2007).

    CAS PubMed Google Scholar Article

  • Brown, Ohio et al. Greater reduction of platelet activation markers and platelet-monocyte aggregates by prasugrel compared to clopidogrel in stable coronary artery disease. Thromb. Hemost. 100626–633 (2008).

    CAS Google Scholar Article

  • May, AE et al. Reduction of monocyte-platelet interaction and monocyte activation in patients receiving antiplatelet therapy after coronary stent implantation. EUR. J-heart 181913-1920 (1997).

    CAS Google Scholar Article

  • Allen, N. et al. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis 282, 11–18. https://doi.org/10.1016/j.atherosclerosis.2018.12.029 (2019).

    CAS PubMed Google Scholar Article

  • Meher, S., Duley, L., Hunter, K., and Askie, L. Antiplatelet therapy before or after 16 weeks’ gestation to prevent preeclampsia: a meta-analysis of individual participant data. A m. J. Obstet. Gynecol. 216, 121–128. https://doi.org/10.1016/j.ajog.2016.10.016 (2017).

    CAS PubMed Google Scholar Article

  • Gremel, T. et al. The formation of platelet-monocyte aggregates is independent of platelet reactivity induced by residual agonists during treatment. Atherosclerosis 207, 608–613. https://doi.org/10.1016/j.atherosclerosis.2009.05.037 (2009).

    CAS PubMed Google Scholar Article